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Abstract: In the past decade, many detection and 
estimation algorithms have been reported for esti- 
mating a desired Bernoulli-Gaussian signal which 
was distorted by a linear time-invariant system. 
The well known Kormylo and Mendel’s single 
most likely replacement (SMLR) algorithm, which 
works well and has been successfully used to 
process real seismic data, is an oflline signal pro- 
cessing algorithm. The paper proposes a recursive 
SMLR algorithm which has online data pro- 
cessing capabilities and requires much less compu- 
tational effort than Chi and Mendel’s recursive 
algorithm and Goussard and Demoment’s recur- 
sive algorithm. Simulation results show good per- 
formance. 

1 Introduction 

Estimating a desired signal p(k)  from a given set of noisy 
data z (k)  based on the following convolutional model 

m 

z (k)  = p ( k )  * u(k) + n(k) = u(i)p(k - i )  + n(k) (1) 

is a deconvolution problem, where n(k) is measurement 
noise and u(k) is the impulse response of a linear time- 
invariant signal distorting system which corresponds to 
such examples as the source wavelet in seismic deconvol- 
ution C1-31 and the channel impulse response in channel 
equalisation [4] (in communications). The convolutional 
model eqn. 1 can also be represented in an nth-order 
state-variable form, as 

x ( k )  @ ~ ( k  - 1) + y&) (2) 
z (k)  = h’x(k) + n(k)  (3) 

where x(k),  y, and h are n x 1 vectors, @ is an n x n 
matrix. Of course, given u(k), there exist many (@, y. h)’s 
[SI. Kormylo and Mendel [6 ]  proposed a Bernoulli- 
Gaussian ( E G )  model, which has been used in seismic 
deconvolution and biomedical ultrasonic imaging, for a 
sparse spike sequence as 

i = O  

P ( k )  = r(k) ‘ (4) 
where r(k) is a white Gaussian random sequence with 
variance U: and q(k) is a Bernoulli sequence for which 

(5) 
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Assuming that n(k) is zero mean white Gaussian with 
variance U,’ and based on the state-variable model (eqns. 
2 and 3), they developed a suboptimal maximum- 
likelihood (ML) algorithm [2, 3, 61, called the single most 
likely replacement (SMLR) algorithm for estimating 
p ( k )  = r(k) . q(k) using measurements z(l), 2(2), . . . , z(N).  
This SMLR algorithm works well and has been suc- 
cessfully used to process real seismic data [3, 71. 

Chi et al. [8] and Giannakis et al. [9] reported com- 
putationally fast suboptimal ML algorithms for estimat- 
ing B-G signals. However, these algorithms are oflline 
signal processing algorithms. As mentioned in Reference 
10, online signal processing is needed when large 
amounts of data are associated with real-time constraints 
and limited computational power. For example, in bio- 
medical ultrasonic imaging, routine nondestructive evalu- 
ation, and on-site seismic data processing. Several 
recursive algorithms for online signal processing were 
also reported and can be found in the literature [1@14]. 
In this paper, we propose a recursive SMLR algorithm 
which has online data processing capabilities and inherits 
all the performance advantages of the omine SMLR algo- 
rithm, assuming that 4k) and statistical parameters I ,  U: 

and U: are given a priori. 

2 Recursive SMLR algorithm 

The proposed recursive SMLR algorithm is basically a 
fixed-lag signal processing algorithm. A block of z(i), 
i = 1, 2, _ _ _ ,  L, where L is the block size, is processed to 
yield b(1). Then the next block of z(i), i = 2, 3, . . . , L + 1, 
is processed to yield F(2) . p(i) for i 3 are obtained so 
on and so forth. 

Let z ,  = (z(l), 2(2), ..., z(k),  ..., z(k + L - 1))’ and 
q, = (q(l), q(2), ..., q(k),  ..., q(k + L - 1))’. The ML esti- 
mate 8, is the one that maximises the likelihood function 

S k { q k  I z k }  = d z k ,  4x1 (6)  
when q, = 4,. Notice that S ,  includes not only past and 
present measurements z(1) through z(k) but also ‘future’ 
measurements z(k + 1) through z(k + L - 1). Let B(i) 
denote the ‘optimum’ estimate of q(i), associated with S i .  
The proposed recursive algorithm detects q(k) based on 
S ,  by searching for the optimum q(k) through 
q(k + L - 1) with q(l) = 4(1), q(2) = 6(2), . . . , q(k - 1) = 

The iterative omine SMLR algorithm reported in Ref- 
erence 6, with some modifications, fits the need for the 
proposed recursive SMLR algorithm at each recursion. 
Let A(j )  denote the likelihood ratio 

ij(k - 1). 

(7) 
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where 9, = (q,(l) = al), q,(2) = 4(2), ... , q,(k - 1) = G(k 
- l), q,(k), q,(k,+ I), . . . , q,(k + L - 1))' is a reference 

sequence and 9j  1s a test sequence defined as 

which differs from 9, only at a single time location j. 
During each iteration, the recursive SMLR algorithm 
searches for the 'optimal' q(k) through q(k + L - 1) as 
follows: 

(a) Compute In A(j) for j = k, k + 1, . . . , k + L - 1. 
(b) Assume that In A(j') = max {In h(j), k < j C k 

+ L - 1 ) ;  if In A(j') 0, update qr(j') by 1 - q,(j') and 
go to (a). 
When In A(j) C 0 for all k < j < k + L - 1, the detection 
of q(k) is finished and the obtained t ( k )  is the desired 
estimate, B(k), of q(k). The by-product qr(i), 
k + 1 < i < k + L - 1 together with either q(k + L) = 0 
or q(k + L) = 1 can be used as the initial conditions at 
next recursion associated with S , + , .  When k = 1 and 
L = N (total number of data), the recursive SMLR algo- 
rithm reduces to the offline SMLR algorithm. It is advis- 
able here to indicate the distinctions between the 
recursive SMLR algorithm and some other recursive sub- 
optimal ML algorithms. 

The recursive SMLR algorithm differs from 
Kormylo's recursive algorithm [12] in that the latter 
detects q(k) based on S, by letting q(l) = 4(1), q(2) = 
4(2), ..., q(k - 1) = 4(k - 1) and q(i) = E[q(i)] = I for 
k + 1 < i C k + L - 1, which is not consistent with the 
B 4 i  assumption for q(i), k + 1 C i C k + L - 1. Gouss- 
ard and Demoment's recursive algorithm [lo] detects 
q(k) based on the expected value of S, over all possible 
q(i)'s for k + 1 < i C k + L - 1 with q(1) = 4(l), 
q(2) = 4(2), . . . , q(k - 1) = 4(k - 1). Chi and Mendel's 
Viterbi algorithm [l l]  basically detects q(k) by letting 
q(1) = j(l), q(2) = $2), . . . , q(k - 1) = 4(k - 1)  and 
searching for the maximum S ,  over all possible q(i)'s for 
k < i < k + L - 1 .  

Next, we turn to the computational issue of the recur- 
sive SMLR algorithm. In A(j )  has been shown [2, 61 to 
be 

p j  = 1 - 2q,(j), v j  = (0, 0, . . . , v(O), v(l), . . . , o(k -j))' and 
0, = E[zkziIq = q,]. fi and aj for k < j < k + L - 1 can 
be obtained by running a Kalman filter type optimal 
smoother [2,6] based on the state-variable model eqns. 2 
and 3 with the initial conditions P(k - 1 I k - 1) and 
P(k - 1 1 k - l), where P(k - 1 I k - 1) is the filtered esti- 
mate of x(k - 1) and P(k - 1 I k - 1) is the associated 
error covariance matrix and both of them are available 
prior to time point k. The reader can refer to References 2 
and 6 for the detailed procedure of computing& and uj 
for k C j C k + L - 1. Therefore, the computational load 
for detecting q(k) is approximately only two Kalman 
filters (one optimal smoother) running over L observa- 
tions multiplied by the number, 1, of iterations of running 
(a) and (b) at each recursion. In general, I < 2L which 
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implies a great computational saving compared with Chi 
and Mendel's VA algorithm [ll] and Goussard and 
Demoment's recursive algorithm [lo] since both of them 
need 2L Kalman filters running over L data associated 
with all possible q(j)'s for k C j < k + L - 1 at each 
recursion. The proposed recursive SMLR algorithm is 
therefore a computationally eficient algorithm and 
inherits all performance advantages of the well known 
offline SMLR algorithm. 

If 4(k) = 0, we proceed with the next recursion associ- 
ated with S , , , .  When B(k) = 1, we then have to estimate 
r(k). It is well known that the ML estimate ?(k) [2] is 
given by 

34 = 0: &If, (12) 
Therefore, obtaining ?(k) using eqn. 12 with q(k) = 4(k) is 
trivial. 

3 Computer simulations 

We generated noise free data by convolving a selected 
wavelet o(k), taken from Reference 2 and shown in Fig. 1, 

( I  
0 10 20 30 LO 50 60 70 80 90 100 

-0.8 " " ' " " ' 

samples 

with a B G  signal with parameters I = 0.1, 0.' = 1. We 
then added a pseudo-Gaussian noise sequence to the noise 
free data to form the synthetic data z(k) shown in Fig. 2 

Fig. 1 Selected wauelet v(k) 
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Fig. 2 Synthetic data 

with a signal-to-noise ratio (SNR) equal to five. We then 
estimated p(k)  using the recursive SMLR algorithm. We 
also estimated p(k)  using the offline SMLR algorithm for 
comparison. The deconvolved results are shown in Fig. 3 
where circles denote true spikes and bars denote esti- 
mates. 

The results for L equal to 2, 6 and 10 are shown in 
Figs. 3a-c, respectively. The results using the offline 
SMLR algorithm for N = 512 are shown in Fig. 3d. 
Apparently, the results shown in Fig. 3b are inferior to 
those shown in Fig. 3c, and are much better than those 
shown in Fig. 3a, from which one can observe that quite 
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Simulation results using the recursive SMLR algorithm for 

a few moderate spikes were missed. The fact that the 
recursive SMLR algorithm performs better for a larger L 
is consistent with the fact that more ‘future’ observations 
improve its performance. The results shown in Fig. 3d are 
better than those shown in Figs. 3a-c. Notice that a large 
spike at the end of p(k)  in Fig. 3d was not included in Fig. 
3a-c because the last L data of z(k) were not processed by 
the recursive SMLR algorithm. Nevertheless, the results 
shown in Fig. 3c are comparable to those shown in Fig. 
3d. This fact indicates that the performance of the recur- 
sive SMLR algorithm is satisfactory with L > 10 for this 
case. No doubt, for the same performance a larger L is 
needed for a lower SNR. Of course, the cost of computa- 
tion efforts and memories needed is proportional to L. 
The selection of L is, therefore, a tradeoff of performance 
and cost to be determined by the user. 

4 Discussion and conclusions 

We have presented a recursive SMLR deconvolution 
algorithm, which has online data processing capabilities 
and requires much less computational effort than Chi 
and Mendel’s recursive algorithm [ll]  and Goussard 
and Demoment’s recursive algorithm [lo], for estimating 
a sparse spike sequence p ( k )  modelled as a B-G signal 
which was distorted by a linear time-invariant system. At 
each time point, q(k) is detected by maximising S, given 
by eqn. 6 under the constraint that q(i) = 4(i) for 
i < k - 1 where G(i) is the optimum estimate of q(i) 
associated with S t .  At each recursion, the recursive 
SMLR algorithm follows the same detection procedure 
as the well known ollline SMLR algorithm with some 
modifications. A block of data z (k)  through z(k + L) is 
processed to yield G(k). Therefore, L-sample time delay is 
necessary. The performance of the algorithm is better for 
a larger L at the expense of more computation effort and 
more memory. Therefore, the determination of L is a 
tradeoff of performance and cost. Finally, we also showed 
some simulation results which support the proposed 
recursive algorithm. 
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Erratum 
WALTON, A.M.: ‘Tracking manoeuvring targets with a 
low probability of detection in clutter’, IEE Proc. F, 
Radar & Signal Process., 1990,137, (3), pp. 183-186 

Eqn. 22 should read 

1 5 - _  cpki; 
Bt i e t  

k -  

Eqn. 23 should read 
The last eqn. before eqn. 3 should read 

{A}:= = { x i -  n $i n r;}z-:, j=y,=y 
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